
Types of Assignments for Novice Programmers
Alexander Ruf, Marc Berges, Peter Hubwieser
Technische Universität München, TUM School of Education

Abstract
This poster deals with the classification of as-
signments according to their type. In contrast to
other publications, we derive assignment types
not deductively, but extract them empirically from
different sources. Our main research question is:
What types of programming assignments are ac-
tually given to novice programmers? In addition,
we compare our empirically found assignment
types to the deductively derived ones from the
literature. This is driven by the following research
questions: Are there types of assignments that
are mentioned in literature, which however are
not or rarely found in actual assignments given to
novice programmers? Can assignment types be
found that cannot or only poorly be matched with
the category types described in the literature?

Methodology
We included in our analysis all assignments of
the chosen sources that contain programming
code either in the assignment or in the corres-
ponding solution. The extent of the programming
code does not matter and ranges from just one
line of code to the full program. Since we have re-
stricted ourselves to assignments for novice pro-
grammers, we included assignments only up to
the topics inheritance and polymorphism. Often,

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK
Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 12/13
Einführung in die Informatik I Übungsblatt 1
Prof. Dr. Helmut Seidl, A. Lehmann, A.Herz, A.Reuß 26.10.2012

Abgabe: 04.11.2012 (vor 24 Uhr)

Hinweis: Die Klasse MiniJava In der Klasse MiniJava sind einige Details versteckt,
damit Sie sich in den ersten Wochen ganz auf das Wesentliche konzentrieren können. Die
Klasse bietet folgende Methoden zur vereinfachten Ein- bzw. Ausgabe:

• read() und readInt() zum Einlesen eines ganzzahligen Werts,

• readString() zum Einlesen einer textuellen Eingabe sowie

• write(...) zur vereinfachten Ausgabe.

Um die Klasse benutzen zu können,

• laden Sie die Klasse MiniJava.java von der Webseite

https://www.moodle.tum.de/course/view.php?id=7514

herunter,

• speichern Sie MiniJava.java im selben Verzeichnis wie Ihre eigenen Java-Dateien und

• erweitern Sie ihre Klassendefinition(en) um extends MiniJava .

Verwenden Sie zur Lösung der folgenden Aufgaben nur MiniJava - Sprachkonstrukte!

Aufgabe 1.1 (P) Erste Schritte

a) Starten Sie die Entwicklungsumgebung NetBeans. Erstellen Sie ein neues Projekt na-
mens Info1 in NetBeans. Öffnen Sie die Datei MiniJava.java in NetBeans und spei-
chern Sie diese in Ihrem Projekt unter Info1/src/info1/MiniJava.java ab. NetBe-
ans weist Sie daraufhin, dass die package declaration geändert werden muss. Fügen
Sie dazu die Zeile package info1; am Anfang der Klasse MiniJava ein.

b) Erstellen Sie nun die Klasse HelloWorld im Package info1 in NetBeans. Diskutieren
Sie mit Ihrem Tutor die automatisch erstellten Elemente des Programms. Ergänzen
Sie Ihr Programm folgendermaßen:

public class HelloWorld extends MiniJava {
public stat ic void main (S t r ing [] a rgs) {

wr i t e (”He l lo World ! ”) ;
}

}

Am Ende sollte Ihr NetBeans in etwa so aussehen:

1098 Assignments

Given Textual description Program code Diagram Prerequisites

Additionally
given Nothing Prerequisites

Solution to a
similar pro-
blem or to a
part of the
problem

Solution to the problem Nothing Prerequisites Nothing Nothing

To do
Write a pro-
gram (or a
part of it)

Write a pro-
gram (or a
part of it)

considering
the given

prerequisites

Adjust or ex-
tend the gi-
ven solution
to the prob-

lem

Decide if the
given soluti-
on is correct;
give reasons
for it or cor-
rect the so-

lution

Set the right
precondi-

tions to the
given soluti-

on

Optimize the
given soluti-

on

Transfer the
given pro-
gram code
to your IDE
and test it

Consider
the effects

of executing
the given

code

Draw a dia-
gram to the
given code

Transform
the given

code into a
different pro-

gramming
language

Consider an
appropria-
te problem
to the given

code

Transform
the given

code accor-
ding to the
given prere-

quisites

Write a pro-
gram (or a

part of it) to
the given
diagram

Consider an
assignment
and solve it,
considering

the given
prerequisites

Type No. 1.1 1.2 1.3 1.4a 1.4b 1.4c 2.1a 2.1b 2.1c 2.1d 2.1e 2.2 3 4

an assignment in the sources consists of several
parts. Since the partial assignments usually dif-
fer in type we have treated and examined each
subtask as an own assignment in these cases.
To identify the different types of assignments, we
first looked at what is given in the respective as-
signment and what the student has to do to solve
it. Then we stripped both criteria “given” and “to
do” from the context of the assignment and for-
mulated them in a generic way. Similar “givens”
and “to dos” have been combined to one assign-
ment type, i.e. two assignments are of the same
type if they have basically the same given and if
the same is to do. More complex assignments,
which involve more than one „to do“, were di-
vided into corresponding parts and associated

with multiple types, i.e. an „atomic“ assignment
was made from each to do, which was then used
for further investigation. In a last step, we tried to
derive a hierarchy within the found types.

Comparison
If the task types listed by Bower in [1] are trans-
ferable on programming assignments, all of his
types will be found in our empirically derived list.
But the reverse is not the case, some of our types
cannot be transferred to his, e.g. type 1.3 or type
2.1e. The reason for this may be because on the
one hand the individual types in [1] are less ac-
curately described and they are not specifically
intended for programming assignments, on the
other hand Bower’s objective was not a complete

types list but a taxonomy within a list.
The types list of Hazzan and Ragonis presented
in [2] and [3], is much more extensive and more
precisely described. From this list only two ty-
pes cannot be integrated into our list: First, the
type „completing a given solution“ and second
the type „efficiency estimation“. That the latter is
missing in our list is probably due to the fact that
these assignments are made for more advanced
and not for novice programmers, which we have
studied. But it is in fact noteworthy that in none
of our sources a „code cloze“ occurs, especially
since this type of assignment would be very sui-
table for beginners. Conversely, almost all of our
assignment types can be transferred to the list of
Hazzan and Ragonis. Of course, their classifica-
tion differs in some points from ours, especially
as their list is not only intended for programming
assignments, nevertheless a correct mapping
works almost always. Only type 2.1a, where pro-
gram code is to be tested on the computer, does
not match with Hazzan and Ragonis. This is pro-
bably because they have not considered this form
of more practical work as a „typical“ assignment.
[1] Bower, M. (2008, June). A taxonomy of task types in computing. In ACM

SIGCSE Bulletin (Vol. 40, No. 3, pp. 281-285). ACM.
[2] Hazzan, O., Lapidot, T., and Ragonis, N. (2011) Guide to teaching compu-

ter science. An activity-based approach. Springer, Berlin.
[3] Ragonis, N. (2012) Type of Questions - The Case of Com- puter Science.

Olympiads in Informatics, 6, pp. 115-132.

