


 Various studies show high drop-out rates for 
such courses 

 Why is this? 
◦ One hypothesis is that students don’t understand 

the “properties” of their program and how they are 
controlling them via code. 



 Originally proposed by Boulay (1986) 
 Theoretical abstraction designed to represent 

how a particular program executes. 
 Can provide one, or several metaphorical 

“layers” on top of the real machine 
 Doesn’t have to represent everything in the 

real machine 
◦ But must be consistent, be able to explain observed 

behaviour within its model. 
◦ Doesn’t have to explain all characteristics of the 

real machine, but if not must have a well-defined 
subset. 



 To provide a notional machine that’s useful 
for the teaching of introductory programming 
◦ Throughout the first year 

 To provide a valid mental model for learning 
and reasoning about OOP 

 To provide a common framework that 
teachers and students can refer to when 
describing OOP programs 
◦ Whiteboards, textbooks, software… 





 Similar to “Objects 
First” textbook 

 Classes are peach 
rectangles, objects are 
dark red rectangles 
with rounded corners 

 Objects can be 
expanded, then 
individual fields are 
shown 



 Methods are displayed 
as orange rectangles; 
top most method is 
highlighted 

 The “call chain” (stack 
trace) is displayed as 
an arrow overlaying the 
method calls 

 Parameters are shown 
being passed along the 
call chain in “boxes” 



 Some other similar tools show high levels of 
detail, visualising each atomic operation 
◦ Great (arguably) to start with, gets tedious quickly 

 As execution speed increases (user 
controlled) less detail is shown 

 At the slowest level, everything is shown – 
objects are expanded 

 At the fastest level, only objects are shown in 
a “heatmap” style view 

 



 At present, this is implemented with two 
sliders which can be “linked” together 

 7 different user-controlled “conceptual levels” 
at present 



 The notation provides a diagram that can be 
consistently used in a number of formats 

 The implementation animates a diagram from 
a live running program 

 No separate stack trace view – heap and stack 
merged into one diagram 

 Two separate cases for this work – the 
understanding of programming constructs, 
and the understanding of a program. 

 



 Layout – layout in the prototype is sporadic 
and arbitrary at present, objects should be 
laid out more consistently 

 Testing – should test the prototype with 
students, gain feedback and undergo 
multiple iterations of improvement 


