


 Various studies show high drop-out rates for 
such courses 

 Why is this? 
◦ One hypothesis is that students don’t understand 

the “properties” of their program and how they are 
controlling them via code. 



 Originally proposed by Boulay (1986) 
 Theoretical abstraction designed to represent 

how a particular program executes. 
 Can provide one, or several metaphorical 

“layers” on top of the real machine 
 Doesn’t have to represent everything in the 

real machine 
◦ But must be consistent, be able to explain observed 

behaviour within its model. 
◦ Doesn’t have to explain all characteristics of the 

real machine, but if not must have a well-defined 
subset. 



 To provide a notional machine that’s useful 
for the teaching of introductory programming 
◦ Throughout the first year 

 To provide a valid mental model for learning 
and reasoning about OOP 

 To provide a common framework that 
teachers and students can refer to when 
describing OOP programs 
◦ Whiteboards, textbooks, software… 





 Similar to “Objects 
First” textbook 

 Classes are peach 
rectangles, objects are 
dark red rectangles 
with rounded corners 

 Objects can be 
expanded, then 
individual fields are 
shown 



 Methods are displayed 
as orange rectangles; 
top most method is 
highlighted 

 The “call chain” (stack 
trace) is displayed as 
an arrow overlaying the 
method calls 

 Parameters are shown 
being passed along the 
call chain in “boxes” 



 Some other similar tools show high levels of 
detail, visualising each atomic operation 
◦ Great (arguably) to start with, gets tedious quickly 

 As execution speed increases (user 
controlled) less detail is shown 

 At the slowest level, everything is shown – 
objects are expanded 

 At the fastest level, only objects are shown in 
a “heatmap” style view 

 



 At present, this is implemented with two 
sliders which can be “linked” together 

 7 different user-controlled “conceptual levels” 
at present 



 The notation provides a diagram that can be 
consistently used in a number of formats 

 The implementation animates a diagram from 
a live running program 

 No separate stack trace view – heap and stack 
merged into one diagram 

 Two separate cases for this work – the 
understanding of programming constructs, 
and the understanding of a program. 

 



 Layout – layout in the prototype is sporadic 
and arbitrary at present, objects should be 
laid out more consistently 

 Testing – should test the prototype with 
students, gain feedback and undergo 
multiple iterations of improvement 


